48 research outputs found

    Outsmart supply dips in renewable energy

    Get PDF
    Integrating intermittent renewable-energy supplies into existing electricity grids in a stable way will depend on artificial intelligence. Such a system could process massive volumes of consumption data and adjust power usage almost instantly, giving real-time control over supply and demand. Domestic consumers would be rewarded (with cheaper bills) for shifting their energy demand at short notice when the grid has a power imbalance, as is already the case for large industrial consumers and grid-scale storage systems. Smart meters that collect household consumption data would enable this process. By 2020, the United Kingdom aims to have such meters in 26 million homes and the European Union has a target of 200 million. These meters would contain microcontroller devices that communicate wirelessly with the grid. The meter could then momentarily dim lighting or switch off electric heaters, for example, without discomforting the occupiers. The efficiency of this process will depend on demand predictions for individual consumers, which involves using large amounts of data to model people's energy constraints and preferences over time. Embedded artificial intelligence will analyse and model these consumption data, enabling the grid response to occur within seconds

    Using options with set exercise prices to reduce bidder exposure in sequential auctions

    Get PDF
    This report studies the benefits of using priced options for solving the exposure problem that bidders with valuation synergies face in sequential auctions. We consider a model in which complementary-valued items are auctioned sequentially by different sellers, who have the choice of either selling their good directly or through a priced option, after fixing its exercise price. We analyze this model from a decision-theoretic perspective and we show, for a setting where the competition is formed by local bidders, that using options can increase the expected profit for both buyers and sellers. Furthermore, we derive the equations that provide minimum and maximum bounds of the synergy buyer’s bid in order for both sides to have an incentive to use the options mechanism. Next, we perform an experimental analysis of a market in which multiple synergy buyers are active simultaneously

    Data analysis of battery storage systems

    Get PDF
    Battery energy storage systems can assist distribution network operators (DNOs) to face the challenges raised by the substantial increase in distributed renewable generation. A challenge is that these resources are intermittent and often ‘invisible‘ to the DNO. If not monitored, the aggregate size of small embedded generation resources can cause thermal wearing of distribution assets and voltage excursions, especially in sunny/windy periods with insufficient local demand. Several developers of energy storage solutions, with technologies such as lithium-ion (Li-ion) batteries, offer their products to address peak shaving, frequency and voltage control needs within the network. Once deployed within the energy network batteries experience capacity degradation with usage, these companies will need to incorporate methods from prognostics and health management (PHM) in order to better manage their products. The main deliverable of this project

    Game-theoretic modeling of curtailment rules and network investments with distributed generation

    Get PDF
    Renewable energy has achieved high penetration rates in many areas, leading to curtailment, especially if existing network infrastructure is insufficient and energy generated cannot be exported. In this context, Distribution Network Operators (DNOs) face a significant knowledge gap about how to implement curtailment rules that achieve desired operational objectives, but at the same time minimise disruption and economic losses for renewable generators. In this work, we study the properties of sev

    Improving the efficiency of renewable energy assets by optimizing the matching of supply and demand using a smart battery scheduling algorithm

    Get PDF
    Given the fundamental role of renewable energy assets in achieving global temperature control targets, new energy management methods are required to efficiently match intermittent renewable generation and demand. Based on analysing various designed cases, this paper explores a number of heuristics for a smart battery scheduling algorithm that efficiently matches available power supply and demand. The core of improvement of the proposed smart battery scheduling algorithm is exploiting future knowledge, which can be realized by current state-of-the-art forecasting techniques, to effectively store and trade energy. The performance of the developed heuristic battery scheduling algorithm using forecast data of demands, generation, and energy prices is compared to a heuristic baseline algorithm, where decisions are made solely on the current state of the battery, demand, and generation. The battery scheduling algorithms are tested using real data from two large-scale smart energy trials in the UK, in addition to various types and levels of simulated uncertainty in forecasts. The results show that when using a battery to store generated energy, on average, the newly proposed algorithm outperforms the baseline algorithm, obtaining up to 20–60% more profit for the prosumer from their energy assets, in cases where the battery is optimally sized and high-quality forecasts are available. Crucially, the proposed algorithm generates greater profit than the baseline method even with large uncertainty on the forecast, showing the robustness of the proposed solution. On average, only 2–12% of profit is lost on generation and demand uncertainty compared to perfect forecasts. Furthermore, the performance of the proposed algorithm increases as the uncertainty decreases, showing great promise for the algorithm as the quality of forecasting keeps improving

    Real-time control of distributed batteries with blockchain-enabled market export commitments

    Get PDF
    Recent years have seen a surge of interest in distributed residential batteries for households with renewable generation. Yet, assuring battery assets are profitable for their owners requires a complex optimisation of the battery asset and additional revenue sources, such as novel ways to access wholesale energy markets. In this paper, we propose a framework in which wholesale market bids are placed on forward energy markets by an aggregator of distributed residential batteries that are controlled in real time by a novel Home Energy Management System (HEMS) control algorithm to meet the market commitments, while maximising local self-consumption. The proposed framework consists of three stages. In the first stage, an optimal day-ahead or intra-day scheduling of the aggregated storage assets is computed centrally. For the second stage, a bidding strategy is developed for wholesale energy markets. Finally, in the third stage, a novel HEMS real-time control algorithm based on a smart contract allows coordination of residential batteries to meet the market commitments and maximise self-consumption of local production. Using a case study provided by a large UK-based energy demonstrator, we apply the framework to an aggregator with 70 residential batteries. Experimental analysis is done using real per minute data for demand and production. Results indicate that the proposed approach increases the aggregator’s revenues by 35% compared to a case without residential flexibility, and increases the self-consumption rate of the households by a factor of two. The robustness of the results to uncertainty, forecast errors and to communication latency is also demonstrated

    Efficient methods for approximating the Shapley value for asset sharing in energy communities

    Get PDF
    With the emergence of energy communities, where a number of prosumers invest in shared renewable generation capacity and battery storage, the issue of fair allocation of benefits and costs has become increasingly important. The Shapley value has attracted increasing interest for redistribution in energy settings - however, computing it exactly is intractable beyond a few dozen prosumers. In this paper, we examine a number of methods for approximating the Shapley value in realistic community energy settings, and propose a new one. To compare the performances of these methods, we also design a novel method to compute the Shapley value exactly, for communities of up to several hundred agents by clustering consumers into a smaller number of demand profiles. We compare the methods in a large-scale case study of a community of up to 200 household consumers in the UK, and show that our method can achieve very close redistribution to the exact Shapley values but at a much lower (and practically feasible) computation cost

    Efficient methods for approximating the Shapley value for asset sharing in energy communities

    Get PDF
    With the emergence of energy communities, where a number of prosumers invest in shared generation and storage, the issue of fair allocation of benefits is increasingly important. The Shapley value has attracted increasing interest for redistribution in energy settings — however, computing it exactly is intractable beyond a few dozen prosumers. In this paper, we first conduct a systematic review of the literature on the use of Shapley value in energy-related applications, as well as efforts to compute or approximate it. Next, we formalise the main methods for approximating the Shapley value in community energy settings, and propose a new one, which we call the stratified expected value approximation. To compare the performance of these methods, we design a novel method for exact Shapley value computation, which can be applied to communities of up to several hundred agents by clustering the prosumers into a smaller number of demand profiles. We perform a large-scale experimental comparison of the proposed methods, for communities of up to 200 prosumers, using large-scale, publicly available data from two large-scale energy trials in the UK (UKERC Energy Data Centre, 2017, UK Power Networks Innovation, 2021). Our analysis shows that, as the number of agents in the community increases, the relative difference to the exact Shapley value converges to under 1% for all the approximation methods considered. In particular, for most experimental scenarios, we show that there is no statistical difference between the newly proposed stratified expected value method and the existing state-of- the-art method that uses adaptive sampling (O’Brien et al., 2015), although the cost of computation for large communities is an order of magnitude lower

    AI-Driven Maintenance Support for Downhole Tools and Electronics Operated in Dynamic Drilling Environments

    Get PDF
    Downhole tools are complex electro-mechanical systems that perform critical functions in drilling operations. The electronics within these systems provide vital support, such as control, navigation and front-end data analysis from sensors. Due to the extremely challenging operating conditions, namely high pressure, temperature and vibrational forces, electronics can be subjected to complex failure modes and incur operational downtime. A novel Artificial Intelligence (AI)-driven Condition Based Maintenance (CBM) support system is presented, combining Bottom Hole Assembly (BHA) data with Big Data Analytics (BDA). The key objective of this system is to reduce maintenance costs along with an overall improvement of fleet reliability. As evidenced within the literature review, the application of AI methods to downhole tool maintenance is underrepresented in terms of oil and gas application. We review the BHA electronics failure modes and propose a methodology for BHA-Printed Component Board Assemblies (PCBA) CBM. We compare the results of a Random Forest Classifier (RFC) and a XGBoost Classifier trained on BHA electronics memory data cumulated during 208 missions over a 6 months period, achieving an accuracy of 90 % for predicting PCBA failure. These results are extended into a commercial analysis examining various scenarios of infield failure costs and fleet reliability levels. The findings of this paper demonstrate the value of the BHA-PCBA CBM framework by providing accurate prognosis of operational equipment health leading to reduced costs, minimised Non-Productive Time (NPT) and increased operational reliability

    A multi-sectoral approach to modelling community energy demand of the built environment

    Get PDF
    This paper examines the major challenges associated with evaluating energy demand in the residential building sector in an integrated energy system modelling environment. Three established modelling fields are examined to generate a framework for assessing the impact of energy policy: energy system models, building stock models and dynamic building simulation. A set of profound challenges emerge when attempting to integrate such models, due to distinct differences in their intended applications, operational scales, formulations and computational implementations. Detailed discussions are provided on the integration of temporally refined energy demand, based on thermodynamic processes and socio-technical effects which may stem from new policy. A detailed framework is discussed for generating aggregate residential demands, in terms of space heating demand, domestic hot water demand, and lighting, appliance and consumer electronics demand. The framework incorporates a pathway for interpreting the effects of changes in household behaviour resulting from prospective policy measures. When long-term planning exercises are carried out using this framework, the cyclic effects between behavioural change and policy implementation are also considered. This work focused specifically on the United Kingdom energy system, however parallels can be drawn with other countries, in particular those with a mature privatised system, dominated by space heating concerns
    corecore